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A systematic analysis of the behavior of the quantum Markovian master equation driven by coherent control
fields is proposed. Its irreversible character is formalized using control-theoretic notions and the sets of states
that can be reached via coherent controls are described. The analysis suggests to what extent(and how) it is
possible to counteract the effect of dissipation.
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I. INTRODUCTION

For an open quantum dynamical system(see[1–3]), the
problem of coherent manipulation of the state is far less
trivial than for a closed system and is the subject of recent
intense research, especially but not exclusively in connection
with quantum information processing; see[4–6] or the sur-
vey papers [7,8]. The (well-known) reason is that the
dissipation/relaxation part of the dynamics(often called the
Lindbladian) tends irreversibly to bring the system to an
equilibrium point which cannot be fully compensated by
means of coherent control authority, although it can be modi-
fied to some extent(see[9]). For the Markovian formulation,
this is encoded in the structure of the Lindbladian. In this
work, the idea of “irreversibility in spite of the control ac-
tion” is made rigorous by using standard notions from clas-
sical control theory. For example, it is shown that the sets of
states reachable by means of coherent controls are almost
always open and dense in the space of density operators.
This, in control terms the so-calledaccessibilityproperty, is
not sufficient to guarantee reversibility. The unavoidable ir-
reversibility can be formulated as the lack of the so-called
small-time controllability, i.e., as the impossibility of reach-
ing arbitrary neighborhoods of a given state by means of
coherent controls alone. Small-time controllability itself is
only a sufficient condition forcontrollability (meaning the
common intuitive notion of arbitrary manipulability of the
state). In fact, we will see that depending on the structure of
the Lindbladian it may happen that some target states may be
reachable if we allow a long enough time to elapse. Never-
theless, it is not possible to steerany initial state toany target
density in finite time. This may be achievable(again depend-
ing on the value of the Lindbladian) only as time goes to
infinity. For example, it is not possible for unital Lindbladi-
ans because in this case the purity of the state during the
dynamical process is monotonically decreasing, regardless of
the controls. In this case it is also easy to give an explicit
description of all the states reachable by the driven master
equation. In the case of affine Lindbladians, the situation is
more complicated and “purifications” may occur. What is
common in both cases is that the change of purity in the
state, and thus the possibility of steering the system out of a

sphere of constant purity, is only due to the Lindbladian, not
to the coherent controls. For a two-level system, it is shown
to what extent this can be used to accomplish closed trajec-
tories which are repeatable in finite time.

The paper is organized as follows. In the next section the
model for the Markovian master equation with coherent con-
trols is introduced and its unforced behavior briefly de-
scribed, in Sec. III the different notions of controllability
mentioned above are applied to it, and in Sec. IV the struc-
ture of the reachable sets is described from a nonlocal per-
spective on a few examples of a two-level system. Finally, in
Sec. V a few coherent control strategies are discussed, based
both on counteracting the dissipation and on actively using
it. Part of the material of this work(Sec. III) overlaps with
[10], although the presentation is less technical and more
oriented to an audience not specialized in control theory. We
refer to that work for a more detailed background on geo-
metric control and alternative proofs of the results.

II. QUANTUM DYNAMICAL SEMIGROUPS
WITH COHERENT CONTROLS

The state of a quantum mechanical system in an
N-dimensional Hilbert spaceHN is described by a positive
semidefinite Hermitian operatorr, called the density matrix,
having trace trsrd=1 and trsr2dø1. By dimension counting,
r depends onn=N2−1 real parameters(see [11]). If
l1, . . . ,ln form a complete orthonormal basis ofN3N trace-
less Hermitian operators(here thelk are the so-called Gell-
Mann matrices; see Appendix A of Part II of[1] for N
=2,3,4) and l0 is the rescaled identity matrix, thenr
=o j=0

n trsrl jdl j =o j=0
n r jl j, with r0=N−1/2 fixed constant and

then real parametersr j giving the parametrization ofr. The
vector of expectation valuesr=fr1¯rngT is called theco-
herence vectorof r [1]. Due to the constant component along
l0, r belongs to an affine space characterized by the extra
fixed coordinater0=N−1/2. Suchn-dimensional affine vector
r̄=fr0 r1¯rngT=fr0 rTgT is normally referred to as homo-
geneous coordinates ofr and lives in a real vector space that
has Euclidean inner product given by the trace metric:ir̄i
=Îkkr̄ ,r̄ll=Îtrsr2d. The condition trsr2dø1 then translates
in r̄ space asr̄ belonging to a subset of the solid affine ball

of radiusÎ1−1/N centered atfr0 0¯0gT (call it B̄n) for all
positive times.*Electronic address: altafini@sissa.it
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Assume that the HamiltonianH is composed of a time-
invariant partH0 representing the free evolution of the sys-
tem plusq time-varying forcing terms representing the inter-
action withq external fields, modeled semiclassically,

Hstd = H0 + o
k=1

q

ukstdHk, − iH0,− iHk P susNd, s1d

with the real parametersuk representing the amplitude of the
control fields applied.

Call LH the Hamiltonian part of the dynamics andLD the
relaxing/dissipating part. In the basishl jj of traceless Her-
mitian matrices, the Markovian master equation is expressed
as [2]

ṙ = LHsrd + LDsrd

= − i adHsrd +
1

2 o
j ,k=1

n

ajksfl j,rlkg + fl jr,lkgd

= − iFH0 + o
k=1

q

ukstdHk,rG +
1

2 o
j ,k=1

n

ajks2l jrlk − hlkl j,rjd,

s2d

where the Hermitian matrixA=sajkd is positive semidefinite,
Aù0, andh· , ·j is the anticommutator. For the basishl jj, the
anticommutator has an affine structure:hl j ,lkj
=s2ÎN/Ndd jkl0+ol=1

n djklll, with djkl the real and fully sym-
metric tensor(with respect to the permutation of any pair of
indexes).

The parametrization in terms of the homogeneous coordi-
natesr̄ corresponds to choosing a matrix representation for
the vector fields of Eq.(2). For the Hamiltonian partLHs·d,
this is well known to be simply the Liouville equation in the
adjoint representation. The choice of parametrization trans-

forms Eq. (2) into a control bilinear systemon B̄n (see
[12–15]). Bilinearity indicates the simultaneous linear depen-
dence from the stater̄ and the control parametersuk. It pro-
vides the simplest possible nonlinear model of a driven
quantum-dynamical system. Equation(2) becomes

ṙ̄ = L̄H0
r̄ + o

k=1

q

ukL̄Hk
r̄ + L̄Dr̄ = F0 0

0 − i adH0

Gr̄

+ o
k=1

q

ukF0 0

0 − i adHk

Gr̄ + F0 0

v L
Gr̄, r̄ P B̄n, s3d

where the lastsn+1d3 sn+1d matrix has the following block

structure: f0

v

0

L g=o j ,k=1
n ajkL̄jk with L̄jk=f 0

v jk

0

Ljk
g, j ,k=1, . . . ,n.

The Ljkn3n are complex matrices of mixed symmetry and
v jk are imaginaryn-vectors given by

Ljk = sLjkdlr

= −
1

4 o
m=1

n

fsf jmr + idjmrdfkml + sfkmr − idkmrdf jmlg, s4d

v jk =
i

ÎN
ff jk1 ¯ f jkngT. s5d

In Eqs.(4) and(5), f ljk =−isadll
d jk are the structure constants

of the Lie algebra of Hermitian matrices associated with the
basisl1, . . . ,ln.

The behavior of Eq.(3) in the absence of control fields
suk=0d is well studied and understood[1]. Loosely speaking,
since the state space is compact, the effect of the dissipation
is to introduce an attractor into the dynamics of the system,
as is easy to see forN=2 on the Bloch ball. In this case, a
number of characteristic dissipation channels is described in
[16] (their infinitesimal generators are given, for example, in
[10]). Typically one distinguishes between unital(when v
=0) and affine Lindbladians. The qualitative difference be-
tween the two unforced dynamics is depicted in Fig. 1 where
the vector fields for different initial conditions are shown for
a unital Lindbladian(e.g., a combination of bit flip and phase
flip channels) on the left, and, on the right, for an amplitude
damping channel, i.e., for the model of a two-level atom with
spontaneous emission(Example(3) in Sec. V of [10]; see
also Sec. V below). As can be seen in Fig. 1, the main quali-
tative difference between the two cases is in the different
location of the equilibrium point. When such equilibrium
point is independent of the initial condition[the “genuinely
relaxing semigroup” condition(A3) below] then then we

have a global attractor for Eq.(3). While for a unitalL̄D the

FIG. 1. Cartoons of the vector fields of the unforced evolution

for unital L̄D (right) and for an affineL̄D (here representing a spon-
taneous emission channel, left).
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fixed point is always the completely random state, in corre-

spondence with an affineL̄D the equilibrium may be placed
everywhere in the Bloch ball, thus allowing for a more var-
iegated behavior in the dynamical semigroup. In both cases a
basic task of a control action would be to counteract dissipa-
tion, i.e., to “go against” the irreversibility induced by the
asymptotically stable character of the equilibrium point. A
more sophisticated task would be to do this while accom-
plishing also a desired state transfer. In order to gain insight
into these problems, it is useful to carry out first a controlla-
bility analysis for Eq.(3).

III. REACHABLE SETS AND CONTROLLABILITY
NOTIONS

The starting point of a controllability investigation is usu-
ally an analysis of the reachable set, i.e., of the set of statesr̄

in B̄n that can be reached by the dynamics(3) by means of all
possible coherent controls starting from a given initial con-
dition r̄i. When the controls are allowed to vary in a suitable
class of functions(piecewise constant is enough for our pur-
poses), this functional analysis not only reveals if the entire
state space can be explored by suitable excitation(controlla-
bility ), but is also important to device a control-oriented no-
tion of reversibilityof the integral curves of Eq.(3) in both a
local and nonlocal sense. To this aim, we will introduce the
concepts(standard in control theory, see e.g.,[14]) of small-
time controllability and finite-time controllability.

In the following, rather than treatingL̄D as a disturbance,
we will assume we are dealing only with a precisely known

value ofA and hence ofL̄D.
We make the following assumptions.
(A1) If A=0 the system(3) is controllable.
(A2) The parametersajk, j ,k=1, . . . ,n, are fixed and

known exactly.
(A3) The unital partL of the dissipation is such thatL −1

always exists.
Assumption(A3) simply means that the unforced dynam-

ics has an equilibrium point independent of the initial condi-
tion, re=−s−i adH0

+L d−1vr0, and, as mentioned above, is
normally referred to as a “genuinely relaxing” semigroup[1].
The case where Assumption(A1) holds is obviously the most
interesting one: if(A1) is not satisfied then little can be said
for the controlled master equation. As a consequence of

(A2), we can treatL̄D as a part of the drift term(together

with L̄H0
). In control terminology, thedrift is a vector field

which does not depend on any control parameter. Looking at
Eq. (3), in particular, it can be thought of as the part of the
infinitesimal generator which is not directly reversible by
acting on the control inputs and as such it gives the semi-
group structure discussed above.

Given r̄i P B̄n, let us callRsr̄i ,Td the reachable set from

r̄i at time T.0 for the system(3), i.e., the set ofr̄P B̄n such
that r̄s0d= r̄i andr̄sTd= r̄, T.0, for some admissible control
u1, . . . ,uq. If Rsr̄i , øTd=ø0øtøTRsr̄i ,td, then the reachable
set from r̄i is Rsr̄id=ø0øtø`Rsr̄i ,td. We make use of the
following control-theoretical notions:(1) accessibility, (2)

small-time controllability,(3) finite-time controllability, (4)
controllability. They correspond respectively to(see, e.g.,
[17]) (1) dim(Rsr̄i , øTd)=n ∀ T.0, (2) r̄i P intRsr̄i ,Td
∀ T.0, (3) for a givenTf .0, r̄ f P intRsr̄i , øTfd ∀ r̄i ,r̄ f

P B̄n, and(4) r̄ f PclRsr̄id ∀ r̄i ,r̄ f P B̄n, where int(·) means
interior and cl(·) closure. The accessibility property ex-
presses the fact that by varying the controls, the reachable

sets are open and dense in the state spaceB̄n. The accessi-
bility condition disregards the difference between the(non-

reversible) drift sL̄H0
+L̄Ddr̄ and the(reversible) control vec-

tor fields L̄H1
r̄ , . . . ,L̄Hq

r̄ and is just concerned with testing
the dimension of the orbits of the system when varying the
control inputs regardless of their effective reversibility. How-
ever, accessibility is only a necessary condition for control-
lability, i.e., it does not say anything about the controls en-
abling arbitrary and reversible manipulation of the stater̄. In

terms of reachable states,Rsr̄i , øTd open inB̄n but not con-
taining r̄i in its interior implies that it is not possible to reach
in time T an arbitrary neighborhood ofr̄i by means of any

possible control function. For the system(3) with L̄DÞ0 this
will always be the case: the effect of the drift can never be
suppressed by means of the control vector fields. Depending

on the structure ofL̄D it may be possible to achieve control-
lability only as a limit process asT→`. Physically this im-
plies that(3) is never reversible in “small time,” although for
a time long enough(sometimes̀ ) a process may be reversed
and a particular stater̄ f reached.

A fundamental difference between(1) and (2)–(4) above
is that the accessibility concept naturally admits an equiva-
lent infinitesimal characterization, the so-called Lie algebraic
rank condition(LARC), which affirms that a system like(3)
is accessible if and only if the Lie algebra generated by the

vector fieldssL̄H0
+L̄Ddr̄, L̄H1

r̄ , . . . ,L̄Hq
r̄ has dimensionn.

This characterization is purely algebraic and as such easy to

check. If we callg=LiesL̄H0
+L̄D ,L̄H1

, . . . ,L̄Hq
d the corre-

sponding Lie algebra of matrices, for our Markovian master
equation we also have the following condition.

Theorem 1. The system(3) is accessible if and only ifg is
transitive onRn.

Proof. For matrix systems like(3), the easiest way to
check LARC is to test the transitivity ofg in Rn (recall that

B̄n is an affine ball inRn). This is a well-studied topic in
geometric control[18]. j

At the level of the corresponding group of transformations
expsgd, if one disregards the difference between drift and
control vector fields(as the property of accessibility does)
then transitivity implies expsgdRn=Rn and corresponds ex-
actly to our controllability notion. Under Assumption(A1),
the Hamiltonian vector fields of(1) form the Lie algebra
susNd of dimensionn. The N3N traceless skew-Hermitian
matrices −il1, . . . ,−iln are a basis ofsusNd. In the adjoint
representation, −il1, . . . ,−iln are mapped into then3n real
and skew-symmetric matrices −i adl1

, . . . ,−i adln
which

form a basis of the Lie algebra adsusNd, subalgebra ofsosnd
(proper for N.2). This would be the Lie algebra of the
corresponding Liouville equation. However, the dissipation
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term L̄D is not coherent and as such it enlarges the integral
group of(3) from expsadsusNdd to one of the Lie groups prop-
erly containing it. Thus the Lie algebras of interest here must
(1) be real,(2) properly contain adsusNd, and(3) be transitive
on Rn. Such Lie algebras are for exampleslsnd, glsnd and
their semidirect extensionsslsndsRn, glsndsRn. But slsnd
andslsndsRn are not admissible, as they are not compatible
with the assumption ofAù0. See[19] for a complete list of
all Lie algebras transitive onRn.

The condition of Theorem 1 is generically verified for

L̄DÞ0, i.e., almost allL̄D are such thatg=glsnd (if L̄D uni-

tal) or g=glsndsRn (if L̄D is affine). An exception occurs,

for example, whenN.2 and the unital part ofL̄D is diago-

nal. In fact, L̄D diagonal (and unital) belongs to spansId
=glsnd \slsnd. Therefore it commutes withL̄H1

, . . . ,L̄Hq
and

the controls cannot generate new directions of motion. Simi-

larly, when the unital part ofL̄D belongs tososnd % spansId:
the diagonal part commutes with the control vector fields

while Lie brackets ofL̄H1
, . . . ,L̄Hq

with thesosnd part cannot
exit the compact subalgebrasosnd. Notice, however, that for
N=2 adsus2d=sos3d andsos3d % spansId is the Lie algebra of
homoteties ofR3 whose action is transitive onR3. When

L̄D¹sosnd % spansId (or, again, its semidirect extension if

L̄D is not unital) then L̄D must have a noncompact semi-
simple component and we can use a known theorem affirm-
ing that the set of pairs of vector fields in a semisimple Lie
algebra that generate the entire Lie algebra by means of re-
peated Lie brackets is open and dense in the Lie algebra

itself; see, e.g., Theorem 12, Chapter 6 of[14]. L̄D¹sosnd
% spansId is a generic condition inglsnd, hence, for almost

all L̄D we have thatg is equal toglsnd or glsndsRn and thus
we have proved the following:

Corollary 1. The system(3) is generically accessible.
Unlike accessibility, the testing of controllability condi-

tions is for general nonlinear systems a more complicated
matter. Fortunately, for the quantum Markovian master equa-
tion the bilinearity of the vector fields and the peculiar struc-
ture of (3) given by the complete positivity assumption
greatly simplify the task, as we will see. In general, as men-
tioned above, the complications come from the fact that the
initial condition lies on the boundary of the reachable set,
rather than in its interior. In fact, this has as consequence that
some neighborhoods of the initial condition are not reachable
by the control action and thus the system is not controllable.
For the system(3) this is always the case when the drift term

L̄H0
+L̄D is non-null and nonunitary.

Theorem 2. The system(3) is neither small-time nor
finite-time controllable.

Proof. Consider first the small-time controllability prop-
erty. Assume the contrary holds, i.e., thatr̄i P intRsr̄i ,Td
∀ T.0. Then any small enough neighborhoodNsr̄id of r̄i is
such thatNsr̄id, intRsr̄i ,Td. Consider the case of initial
condition which is a mixed state: 0, ir̄ii2,1. Then r̄i
P intRsr̄i ,Td ∀ T.0 implies that∃ a neighborhoodNsr̄id
and control inputs such that statesr̄ f1

sTdPNsr̄id with

ir̄ f1
sTdi2. ir̄ii2 andr̄ f2

sTdPNsr̄id with ir̄ f2
sTdi2, ir̄ii2 are

reachable∀ T.0. But the derivative of the functionir̄i2

d

dt
ir̄i2 = 2kkr̄,ṙ̄ll = 2fkkr̄,sL̄H0

+ L̄Ddr̄ll

+ u1kkr̄,L̄H1
r̄ll + ¯ + uqkkr̄,L̄Hq

r̄llg

= 2kkr̄,L̄Dr̄ll, s6d

shows that the variation of purity ofr̄i cannot be altered
locally by the control action and is determined only by the

direction ofL̄D: if L̄D points inward on the sphereir̄ii2 then
the mixing locally increases, if it points outward then the
state is locally purified. Hencer̄ f1

sTd and r̄ f2
sTd cannot be

both reached in any timeT and we have a contradiction.
Concerning finite-time controllability, from Eq.(6) it is

clear that the change in purity occurs only because ofL̄D

even on a nonlocal basis. Depending on the value ofL̄D, the
uncontrolled equation

ṙ̄ = sL̄H0
+ L̄Ddr̄ s7d

will or will not have an equilibrium point and the flow of Eq.

(7) will or will not cross all the “purity level surfaces” inB̄n

while approaching it. According to our definition, for finite-
time controllability to hold, it has to hold for allr̄i andr̄ f in

B̄n. In general if in Eq.(7) limt→`r̄std= r̄e (even perhaps
depending on the initial condition,r̄e= r̄esr̄id) with ir̄ei2

,1 then controllability does not hold at all. To check it just
considerr̄i such thatir̄ii2ø ir̄ei2. Then at most the ball of
radiusir̄ei is reachable. If insteadir̄ei2=1 then controllabil-
ity is only asymptotic. In fact, the reachable set in finite time
is at most a closed set contained inside the open set{r̄ such
that ir̄i2,1} and only asymptotically may clRsr̄id become

equal toB̄n. j
In the proof above, we excluded the case that state trans-

fer can occur while maintaining the same purity. Of course,
from a practical point of view, if we use strong pulses or if

the decay time induced by theL̄D is long enough, then, in the
first approximation, state transfer between states belonging

to the same purity sphere inB̄n can occur. Still, “purifica-

tions” of r̄ are possible only throughL̄D and thus the impos-
sibility of controllability in finite time wheneverir̄i2,1.

Remark 1. It is worth emphasizing the meaning of the
controllability concepts introduced above.

(i) The lack of reversibility normally associated with the
quantum Markovian master equation is captured by the lack
of small-time controllability.

(ii ) The lack of finite-time controllability could be ex-
pressed as the impossibility of accomplishing an arbitrary
cyclic trajectory in finite time(with 100% probability) by
means of coherent control alone.

IV. GLOBAL STRUCTURE OF THE REACHABLE SETS

Although controllability in small time and finite time is
missing, it is possible to give a detailed global description of
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the sets of states reachable from a given initial conditionr̄i.

The simplest case is whenL̄D is unital.

Proposition 1. If L̄D unital and (3) accessible, then
Rsr̄i , ø td is an annulus of inner and outer radius, respec-
tively, ir̄stdi and ir̄ii. When t→`, clRsr̄id is the ball of
radiusir̄ii.

Proof. In Eq. (6), L̄D unital can point only inward:
sd/dtdir̄i2ø0 ∀ tù0. Furthermore, accessibility implies
that r̄std can be placed on any point of the sphere of radius

ir̄stdi, regardless of the existence of a fixed point forL̄D.
Thus we have the form of an annulus at timet for Rsr̄i ,
ø td and the convergence to the centerfr0 0 0 0gT ast→`.j

Figure 2 shows a sketch of how the reachable sets grow

monotonically in time whenL̄D is a phase damping operator

(Example (2) of Sec. V of [10]; see also Sec. V below),
interplaying with the controls. If we measure the purity of a
density operator by the normir̄i, then we automatically get
the following.

Corollary 2. For L̄D unital, the purity ofr̄ subject to(3) is
nonincreasing.

Proof. It follows again fromsd/dtdir̄i2ø0 ∀ tù0. j

The situation is more complicated whenL̄D is affine. In
fact, in this case, the monotonicity property may not hold

any more, depending on the values ofr̄i and L̄D. A typical
example of what can happen is shown in Fig. 3 for the two-
level system with spontaneous emission. In this case, the
corresponding Lindbladian operator is affine and has a fixed

FIG. 2. Cartoons of the reachable setsRsr̄i , ø td (gray areas)

for the two-level atom with phase damping(L̄D unital) as t grows.

FIG. 3. Cartoons of the reachable setsRsr̄i , ø td (gray areas)

for the two-level atom with spontaneous emission(L̄D affine) as t
grows.
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equilibrium point at the ground stater̄e=fr0 0 0 1/Î2gT (i.e.,
re= u0lk0u).

V. COHERENT CONTROL STRATEGIES
IN THE PRESENCE OF DISSIPATION

In the first part of this section we discuss how to counter-
act dissipation by means of coherent control; in the last part
how to actively use it for the purposes of state transfer. When

L̄D is unital, Corollary 2 states a monotonicity property of
the Hilbert-Schmidt norm ofr̄ that the coherent control can-
not eliminate. However, such a control action can be used to
modify the rate of decay due to the dissipation(at least in the
case whenL is not proportional to the identity), by placingr̄
along the slowest direction of decay.

For example, if we have the phase damping channel of a
two-level system

ṙ̄ = h03
M̄3r̄ + o

k=1

3

ukM̄kr̄ + c3
0 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 0
4r̄

with c.0, it is enough to place the state infr0 0 0 r3gT to
get sd/dtdir̄i2=0 in Eq. (6). This tells that we have a quan-
tum channel not satisfying Assumption(A3). In fact, under

Assumption(A3) any unitalL̄D is such that

max
r̄

kkr̄,L̄Dr̄ll , 0. s8d

The proof follows fromkkr̄ ,L̄Dr̄ll=kkr ,Lrll and the posi-
tive definiteness ofA. From Eq.(6), one has that the control
is not entering intosd/dtdir̄i2 and hence in Eq.(8). The
objective of an “optimal” control strategy aiming at rejecting
as much as possible the dissipation should be to drive the
state to the maximizingr̄ as fast as possible. Because of the
linearity, the property of maximizing(8) is shared by an
entire “ray” of Bloch vectors. Hence, once a strong pulse has
driven the state to the maximizingr̄ it can be switched off.
In the case of a depolarizing channel(Example(1) in Sec. V
of [10]), each direction has the same dissipation rate, and
therefore the coherent control is totally useless. A number of
related results on control of unital Lindbladians appear in a
recent paper[20].

When insteadL̄D is affine, we can have a more construc-
tive use of the coherent controls for the purposes of rejecting

the dissipation becauseL̄D is not always radial and its non-
radial (i.e., tangential and hence unitary) part can be sup-
pressed by a suitably chosen time-varying control law. Re-
writing Eq. (3) as

ṙ = − iSadH0
+ o

k=1

q

ukadHkDr + Lr + vr0,

one possible choice of the control lawuk=uksrd is given by
the following algebraic(state dependent) constraints:

− iSadH0
+ o

k=1

q

ukadHkDr + vr0 = 0. s9d

This may or may not have a solution, depending on the num-
ber of controls available, on the structure of the dissipation,
and on the stater in which it is computed.

It is convenient to show what is happening on an ex-
ample. Consider the “amplitude damping channel,” i.e., the
two-level system with spontaneous emission mentioned
above. Its differential equation is given by

ṙ = 3 0 − h03
− u3 u2

h03
+ u3 0 − u1

− u2 u1 0
4r + g↓3−

1

2
0 0

0 −
1

2
0

0 0 − 1
4r

+ g↓30

0

1
4r0, s10d

were we assume all three controls are available and, for the
sake of simplicity, thatH0=0. The condition(9) becomes

− u3r2 + u2r3 = 0,

u3r1 − u1r3 = 0, s11d

− u2r1 + u1r2 + g↓r0 = 0.

For example, inrA=fr1 0 0gT (see Fig. 4), the affine term
behaves as unitary and can be completely eliminated by a
single control u2=g↓r0/r1. On the contrary, in rB
=f0 0 r3gT the affine term is “purely” radial and no coherent
control can eliminate it(sincer1 and r2 are 0). Even when
vr0 can be suppressed, as inrA, nothing can be done against
the unital partLr which still tends to steer the system to the
completely random state. In the “ideal” case, the strategy
above gives the dashed trajectory in Fig. 4.

FIG. 4. Solid arrow: dissipation operator in two different states
(in rA it is decomposed into radial and tangential components) for
the two-level spontaneous emission model. Dashed line: possible
“controlled” trajectory.
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Alternatively, one could designuk=uksrd by means of an
optimal control problem aiming at keepingr away fromre.
Since re is known, instead ofir̄i one should considerir
−rei as the rate of decay due to the dissipation in the cost
function (together with the norm of the control action). No-
tice from the derivative

d

dt
ir − rei2 = 2kkr − re,ṙll

= 2Fkkr,Lr + vr0ll

− kkre,− iSadH0
+ o

k=1

q

ukadHkDrll
− kkre,Lr + vr0llG

how this time the control plays indeed a nontrivial role.
As explained in[9], a nonzero steady state control can be

used also to modify the equilibrium pointre=−f−isadH0
+ok=1

q adHk
d+L g−1vr0, moving it from a pure to a mixed

state.
The bottom line is that regardless of the control law and

even if we can modify the equilibrium point, we cannot
modify the character of local irreversibility due to the lack of
small-time controllability(see Remark 1). However, if we
decide to use decoherence, rather than just trying to suppress
it “locally,” then it is for example possible to accomplish
repeatable tasks. From the proof of Theorem 2, we have that
cyclic trajectories involving only mixed states(even with
different degrees of mixing) may be feasible using coherent

controls if L̄D is affine, and could be accomplished in finite
time. If instead they involve pure states(and thus “complete

purification”) they can only occur in infinite time even ifL̄D
is affine. For example, for the two-level atom with coherent

controls and spontaneous emission, a closed cycle is de-
scribed in Fig. 5 and in Table I.

VI. CONCLUSION AND OUTLOOK

The main advantage of the control-theoretic formalism
presented in this paper is that it allows us to give a more
“fine-graded” characterization of the notion of irreversibility
normally associated to dissipating quantum dynamical semi-
groups and of how it interacts with the coherent control
fields. This shows the intrinsic limits of unitary control for
these systems. In particular, the impossibility of fully reject-
ing the dissipation is captured in control-theoretic terms by
the lack of small-time controllability. While this does not
forbid the construction of motion planning strategies that
make “active” use of the dissipation,1 it also naturally calls
for richer classes of control fields than just unitary ones to be
studied. Several potential candidates have already been dis-
cussed in the literature for different physical settings, like the
use of gradient fields in NMR[21] and the use of quantum
feedback in quantum optics[22]. In the first case, varying the
constant longitudinal magnetic field, a nonunitary global ef-
fect is obtained and can be used for control purposes; in the
second case a nonunitary degree of freedom is provided by
the back action effect of a weak measurement.

Another potential direction of investigation is to look for
“controlled decoherence free subspaces,” i.e., for particular
(unitary) control design able to actively confine decoherence
to a particular subspace of the state space, combining the
decoherence-free techniques of widespread use in quantum
computing with the “disturbance decoupling” methods of
nonlinear control theory(see Chap. 7 of[23] for an over-
view).
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1Most of the techniques for state transfer in the presence of relax-
ation in the NMR practice are based on this principle; see[24,25].

TABLE I. Cyclic trajectories of Fig. 5 for a two level-atom with
coherent control and spontaneous emission.

State transfer Induced by Time required

rb→ra Coherent control Finite

ra→rb Spontaneous emission Infinite

rd→rg Coherent control Finite

rg→rd Spontaneous emission Finite

FIG. 5. Cartoon of the cyclic trajectories on the Bloch sphere for
a two-level atom with coherent control and spontaneous emission.
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