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Coherent control of open quantum dynamical systems
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A systematic analysis of the behavior of the quantum Markovian master equation driven by coherent control
fields is proposed. Its irreversible character is formalized using control-theoretic notions and the sets of states
that can be reached via coherent controls are described. The analysis suggests to whairekteny it is
possible to counteract the effect of dissipation.
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[. INTRODUCTION sphere of constant purity, is only due to the Lindbladian, not
to the coherent controls. For a two-level system, it is shown

For an open quantum dynamical systésee[1-3)), the 5 \what extent this can be used to accomplish closed trajec-
problem of coherent manipulation of the state is far lessgyies which are repeatable in finite time.

trivial than for a closed system and is the subject of recent e paper is organized as follows. In the next section the
intense research, especially but not exclusively in connectiofogel for the Markovian master equation with coherent con-
with quantum information processing; spe-6] or the sur-  yro|s s introduced and its unforced behavior briefly de-
vey papers[7,8]. The (well-known reason is that the gcriped, in Sec. Il the different notions of controllability
dissipation/relaxation part of the dynami@ften called the  mentioned above are applied to it, and in Sec. IV the struc-
Lindbladiar) tends irreversibly to bring the system t0 an yre of the reachable sets is described from a nonlocal per-
equilibrium point which cannot be fully compensated by gpective on a few examples of a two-level system. Finally, in
means of coherent control authority, although it can be modigec v a few coherent control strategies are discussed, based
fied to some extersee[9]). For the Markovian formulation, poth on counteracting the dissipation and on actively using
this is encoded in the structure of the Lindbladian. In thisj; part of the material of this workSec. 1ll) overlaps with
v'vork,. the idea.of “irreversibi'lity in spite of th'e control ac- [10], although the presentation is less technical and more
tion” is made rigorous by using standard notions from clasyyiented to an audience not specialized in control theory. We

sical control theory. For example, it is shown that the sets ofefer to that work for a more detailed background on geo-
states reachable by means of coherent controls are almogfetric control and alternative proofs of the results.
always open and dense in the space of density operators.

This, in control terms the so-calleatcessibilityproperty, is
not sufficient to guarantee reversibility. The unavoidable ir- Il. QUANTUM DYNAMICAL SEMIGROUPS
reversibility can be formulated as the lack of the so-called WITH COHERENT CONTROLS
small-time controllability i.e., as the impossibility of reach- ) )
ing arbitrary neighborhoods of a given state by means of The state of a quantum mechanical system in an
coherent controls alone. Small-time controllability itself is N-dimensional Hilbert space(" is described by a positive
only a sufficient condition forcontrollability (meaning the ~Semidefinite Hermitian operater, called the density matrix,
common intuitive notion of arbitrary manipulability of the Nhaving trace ip)=1 and ttp?)<1. By dimension counting,
stats. In fact, we will see that depending on the structure of? depends onn=N°-1 real parametergsee [11]). If
the Lindbladian it may happen that some target states may bt - - - Ay form a complete orthonormal basish#x N trace-
reachable if we allow a long enough time to elapse. Neverless Hermitian operatorere the\, are the so-called Gell-
theless, it is not possible to stemyinitial state toanytarget ~Mann matrices; see Appendix A of Part Il ¢f] for N
density in finite time. This may be achievalgkgain depend- =2.3.4 and A, is the rescaled identity matrix, thep
ing on the value of the Lindbladiaronly as time goes to  =2j=atf(PA)N\;=Z{Lopj\j, With po=N""'2 fixed constant and
infinity. For example, it is not possible for unital Lindbladi- then real parameterg; giving the parametrization gf. The
ans because in this case the purity of the state during theector of expectation valugs=[p;--p,]" is called theco-
dynamical process is monotonically decreasing, regardless dference vectoof p [1]. Due to the constant component along
the controls. In this case it is also easy to give an explicit\g, p belongs to an affine space characterized by the extra
description of all the states reachable by the driven mastéfixed coordinatep,=N"Y2. Suchn-dimensional affine vector
equation. In the case of affine Lindbladians, the situation i®=[po p1--pn] =[po p'1" is normally referred to as homo-
more complicated and “purifications” may occur. What is geneous coordinates pfand lives in a real vector space that
common in both cases is that the change of purity in théhas Euclidean inner product given by the trace metjud:
state, and thus the possibility of steering the system out of &\{(p,p))=tr(p?). The condition tfp?)<1 then translates
in p space ap belonging to a subset of the solid affine ball

of radius1-1/N centered afp, 0---0]" (call it @‘) for all
*Electronic address: altafini@sissa.it positive times.
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Assume that the HamiltoniaH is composed of a time-
invariant partH, representing the free evolution of the sys-
tem plusq time-varying forcing terms representing the inter-
action withq external fields, modeled semiclassically,

q
H(t) =Ho+ > u(H,, —iHg,—iHy € su(N), (1)
k=1

with the real parameterns, representing the amplitude of the
control fields applied.

Call £, the Hamiltonian part of the dynamics aig the
relaxing/dissipating part. In the basjs;} of traceless Her-

mitian matrices, the Markovian master equation is expressed

as[2]

p=Lu(p) + Lp(p)

n

1
—iady(p) + > > aj([Nj, PN + [N D)

jk=1
l ]1
=—] + —
2
2

where the Hermitian matriR=(a;,) is positive semidefinite,
A=0, and{-, -} is the anticommutator. For the bagls}, the
anticommutator has an affine  structure{\;,\}
:(Z\EN/N)é\jk)\O-’-EP:]_djkl)\ll with djkl the real and fU“y sym-
metric tensol(with respect to the permutation of any pair of
indexes.

n

2 a2\ phe— N\, p)),
k=1

q

Ho+ 2 U(DH,p
k=1

The parametrization in terms of the homogeneous coordi-

natesp corresponds to choosing a matrix representation fo
the vector fields of Eq(2). For the Hamiltonian part(-),
this is well known to be simply the Liouville equation in the
adjoint representation. The choice of parametrization tran
forms Eg. (2) into a control bilinear systemon B" (see
[12-15). Bilinearity indicates the simultaneous linear depen-
dence from the stafp and the control parameteus. It pro-

s_
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FIG. 1. Cartoons of the vector fields of the unforced evolution

for unital ZD (right) and for an affineED (here representing a spon-
taneous emission channel, left

©)

[
Vig= ——[fir - Finl "
r jk \S'N[ jk1 Jkn]

In Egs.(4) and(5), fjx=-i(ad, ) are the structure constants
of the Lie algebra of Hermitian matrices associated with the
basishq, ... \p.

The behavior of Eq(3) in the absence of control fields

(u=0) is well studied and understoddi]. Loosely speaking,

vides the simplest possible nonlinear model of a driverjnce the state space is compact, the effect of the dissipation

quantum-dynamical system. Equati@?) becomes

q

S= Lt Sulupeiop=| o |
= + u + = .
P HoP = k~H P T ADP 0 _|acho p
a fo o 0 o] —
+2 . p+ p. peB”, (3
k:1uk{o _Iamk]p [V L|P Pe (3

where the lastn+1) X (n+1) matrix has the following block
— .. — Joo] .

En'kzlajijk with ij:[ka ij], ] ,k: 1,...n

The LynXn are complex matrices of mixed symmetry and

Vjx are imaginaryn-vectors given by

Lik= (L

n

E_ [(fjmr + idjmr)fkml + (fkmr_ idkmr)fjml]i (4)

m=1

structure: [0 0]
vL

1
4

is to introduce an attractor into the dynamics of the system,
as is easy to see fo=2 on the Bloch ball. In this case, a
number of characteristic dissipation channels is described in
[16] (their infinitesimal generators are given, for example, in
[10]). Typically one distinguishes between unif@hen v

=0) and affine Lindbladians. The qualitative difference be-
tween the two unforced dynamics is depicted in Fig. 1 where
the vector fields for different initial conditions are shown for
a unital Lindbladiar(e.g., a combination of bit flip and phase
flip channel$ on the left, and, on the right, for an amplitude
damping channel, i.e., for the model of a two-level atom with
spontaneous emissigifcxample(3) in Sec. V of [10]; see
also Sec. V beloyv As can be seen in Fig. 1, the main quali-
tative difference between the two cases is in the different
location of the equilibrium point. When such equilibrium
point is independent of the initial conditidithe “genuinely
relaxing semigroup” conditiofA3) below] then then we

have a global attractor for E¢3). While for a unitaIZD the
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fixed point is always the completely random state, in corresmall-time controllability,(3) finite-time controllability, (4)
spondence with an affinép, the equilibrium may be placed controllability. They correspond respectively teee, e.g.,
everywhere in the Bloch ball, thus allowing for a more var-[17) (1) dim(R(p;, <T))=n 0 T>0, (2) p; €intR(p;,T)
iegated behavior in the dynamical semigroup. In both casesd T>0. (3) for a givenT(>0, p; € intR(p;, <Ty) O pi, py
basic task of a control action would be to counteract dissipae B", and(4) p; € clR(p;) O p;, p; € B", where int-) means
tion, i.e., to “go against” the irreversibility induced by the interior and o) closure. The accessibility property ex-
asymptotically stable character of the equilibrium point. Apresses the fact that by varying the controls, the reachable
more sophisticated task would be to do this while accomygig gre open and dense in the state s@c@he accessi-
plishing also a desired state transfer. In order to gain insighlgi”ty condition disregards the difference between then-

into these problems, it is useful to carry out first a Contro”a_reversible) drift (ZHJZD)Hand the(reversible control vec-

bility analysis for Eq.(3). e b
tor fieIdsEHlp, ,£qu and is just concerned with testing
IIl. REACHABLE SETS AND CONTROLLABILITY the dimlension of the orbits of _the sys.tem when. \{e_lrying the
NOTIONS control inputs regardless of their effective reversibility. How-
ever, accessibility is only a necessary condition for control-
The starting point of a controllability investigation is usu- lability, i.e., it does not say anything about the controls en-
ally an analysis of the reachable set, i.e., of the set of sgates abling arbitrary and reversible manipulation of the sjatén

in B" that can be reached by the dynami@gsby means of all  terms of reachable stateB(p;, <T) open inB" but not con-
possible coherent controls starting from a given initial con-taining p; in its interior implies that it is not possible to reach
dition p;. When the controls are allowed to vary in a suitablein time T an arbitrary neighborhood ¢f by means of any

class of functiongpiecewise constant is enough for our pur- yossible control function. For the systéB) with £ # 0 this
poses, this functional analysis not only reveals if the entire jj| gjways be the case: the effect of the drift can never be
state space can be explored by suitable excitgtontrolla- suppressed by means of the control vector fields. Depending

bility), but is also important to device a control-oriented no-On the structure of - it mav be possible to achieve control-
tion of reversibility of the integral curves of Eq3) in both a o D ybep . o
lability only as a limit process a&§— . Physically this im-

local and nonlocal sense. To this aim, we will introduce the

conceptgstandard in control theory, see e.d.4]) of small- gl't?riéhlﬁtr(]?’);gfvgoﬁgﬁ:gﬁ;r; S:Q?gst;mrﬁé agt:?:\?:régzj
time controllability and finite-time controllability. 9 glsor P y

and a particular statg; reached.

In the following, rather than treatingp as a disturbance, A fundamental difference betweet) and (2)—(4) above
we will assume we are dealing only with a precisely knownig hat the accessibility concept naturally admits an equiva-
value of A and hence ofp. lent infinitesimal characterization, the so-called Lie algebraic
We make the following assumptions. rank condition(LARC), which affirms that a system like)
(A1) If A=0 the systen{3) is controllable. is accessible if and only if the Lie algebra generated by the
(A2) The parametersy, j,k=1,....n, are fixed and yecior fields(Ly,+ Lo)p, Lup, .. ,Lup has dimensiom.

known exactly. . o q.
. . This characterization is purely algebraic and as such easy to
(A3) The unital partL of the dissipation is such that™ purely alge — Y

always exists. check. If we callg=Lie(Ly +Lp, Ly ,....Ly) the corre-

Assumption(A3) simply means that the unforced dynam- spond_ing Lie algebra of matrices,_ for our Markovian master
ics has an equilibrium point independent of the initial condi-€quation we also have the following condition. .
tion, pe=—(i ad40+|-)_lVPo, and, as mentioned above, is Th.e.orem 1Ihe systent3) is accessible if and only if is
normally referred to as a “genuinely relaxing” semigrgap ~ ransitive oni®. - - _ _
The case where AssumptigAl) holds is obviously the most Proof For'matnx systems I|!<§(3), th? ea}13|est way to
interesting one: ifAl) is not satisfied then little can be said check LARC is to test the transitivity qf in R" (recall that
for the controlled master equation. As a consequence of" is an affine ball inR"). This is a well-studied topic in

(A2), we can treal, as a part of the drift ternitogether ~9€0Metric contro[18]. _ u
ith 2o, 1 | inol halrift i field At the level of the corresponding group of transformations
with £Ly)). In control terminology, thalrift is a vector field o,y ) it one disregards the difference between drift and

which does not depend on any control parameter. Looking &lonro| vector fieldgas the property of accessibility dges
Eq. (3), in particular, it can be thought of as the part of the o, transitivity implies exf@)R"=R" and corresponds ex-

infinitesimal generator_ which is not direct.Iy reversible by.actly to our controllability notion. Under Assumptigil),

acting on the cor]trol inputs and as such it gives the S€Mlthe "Hamiltonian vector fields ofl) form the Lie algebra

group structure discussed above. su(N) of dimensionn. The N X N traceless skew-Hermitian
Givenp; e B", let us callR(p;, T) the reachable set from  matrices A4, ..., i\, are a basis ofu(N). In the adjoint

p; at time T>0 for the systen(3), i.e., the set op € B" such  representation, ix4, ...,-i\, are mapped into thax n real

thatp(0)=p; and_F(T):E T>0, foriome admissible control and skew-symmetric matricesi ad,\l, e, aq\n which

Uy, ..U If Ripy, <T)=Uo<<1R(p;, 1), then the reachable form a basis of the Lie algebra gd,, subalgebra ofo(n)

set fromp; is R(p;)=Up<t=-R(p;,1). We make use of the (proper for N>2). This would be the Lie algebra of the

following control-theoretical notions(1) accessibility,(2)  corresponding Liouville equation. However, the dissipation

062321-3



CLAUDIO ALTAFINI PHYSICAL REVIEW A 70, 062321(2004

term L is not coherent and as such it enlarges the integrdier,(DI*> il andpy(T) e M(p) with ||EZ(T)||2<|_|E||2 are
group of(3) from exdad,)) to one of the Lie groups prop- reachableé] T>0. But the derivative of the functioffp(|2
erly containing it. Thus the Lie algebras of interest here must ) L
(1) be real,(2) properly contain ag ), and(3) be transitive d—||§ﬂ2 =2{p,p)) = 2[{p,( Ly, + Lo)p)
on R". Such Lie algebras are for exampi&n), gl(n) and t
their semidirect extensiong(n)®R", gl(n)®R". But sl(n) e Ul
ands[(n)®R" are not admissible, as they are not compatible ul«p’EHlﬁ» u‘*«p’EHqﬁm
with _the assumption 9‘52 0. Snee[19] for a complete list of = 2((p, Lop)), (6)
all Lie algebras transitive oR". -

The condition of Theorem 1 is generically verified for shows that the variation of purity g cannot be altered
ZD;ﬁO, i.e., almost aIED are such thag=gl(n) (if ZD uni- locally by the control action and is determined only by the

tal) or g=gl(N®R" (if Ly is affine. An exception occurs, direction of Lp: if L points inward on the spheflpi]|* then
f | herN> 2 and th ital £ is di the mixing locally increases, if it points outward then the
or example, wherN=>2 and the unital part oLp Is diago-  gap jg locally purified. Hencﬁl(T) andEz(T) cannot be

nal. In fact, £p diagonal (and unita) belongs to spa)  poth reached in any tim& and we have a contradiction.
=gl(n)\sl(n). Therefore it commutes witlf, , ... ,Ly and Concerning finite-time controllability, from Eq6) it is
the controls cannot generate new directions of motion. Simiclear that the change in purity occurs only becausegf
larly, when the unital part oLy belongs toso(n) @ sparil):  even on a nonlocal basis. Depending on the valuggfthe
the diagonal part commutes with the control vector fieldsuncontrolled equation

while Lie brackets ofCHl, ...,.Ly with theso(n) part cannot L= =

exit the compact subalgebsa(n?. Notice, however, that for p= (EHO +Lp)p (7)

N=2 aq?(z):so(g) andso(3) ©sparl) is the Lie a;gebra OF will or will not have an equilibrium point and the flow of Eq.
homoteties ofR® whose action is transitive oft>. When (7) will or will not cross all the “purity level surfaces” iig"

Lp ¢ so(n)@sparl) (or, again, its semidirect extension if \hjle approaching it. According to our definition, for finite-
Lp is not unita) then £ must have a noncompact semi- time controllability to hold, it has to hold for ajy; andp; in
simple component and we can use a known theorem affirmgn|n general if in Eq.(7) lim, ...p(t)=p, (even perhaps
ing that the set of pairs of vector fields in a semisimple Liegepending on the initial conditionpe=pg(p;) with lpdl?
algebra that generate the entire Lie algebra by means of re= j then controllability does not hold at all. To check it just
peated Lie brackets is open and dense in the Lie algebr@onsiderﬁ such that]p;|[2<[pd[>. Then at most the ball of
itself; see, e.g., Theorem 12, Chapter 6[D#]. Lp ¢ so(n)  radius|jpg| is reachable. If insteafpd[>=1 then controllabil-

@ sparl) is a generic condition igl(n), hence, for almost ity is only asymptotic. In fact, the reachable set in finite time

all £, we have that is equal togl(n) or gl(N)@R" and thus IS at most a closed set contained inside the operisuch

we have proved the following: that|[pf*<1} and only asymptotically may ®(p;) become
Corollary 1. The system(3) is generically accessible. equal toB". |
Unlike accessibility, the testing of controllability condi- In the proof above, we excluded the case that state trans-

tions is for general nonlinear systems a more complicateder can occur while maintaining the same purity. Of course,
matter. Fortunately, for the quantum Markovian master equafrom a practical point of view, if we use strong pulses or if

tion the bilinearity of the vector fields and the peculiar struc-the decay time induced by th&, is long enough, then, in the

ture of (3) given by the complete positivity assumption fj st approximation, state transfer between states belonging

greatly simplify the task, as we will see. In general, as men- - =n A1y rifiea.
tioned above, the complications come from the fact that thet_0 the same purity sphere i can occur. Still, “purifica

initial condition lies on the boundary of the reachable settions” of p are possible only throughip and thus th2e IMpos-
rather than in its interior. In fact, this has as consequence th&ibility of controllability in finite time whenevejfpl*<1.
some neighborhoods of the initial condition are not reachable Rémark 1 It is worth emphasizing the meaning of the
by the control action and thus the system is not controllableSontrollability concepts introduced above.

For the systeng3) this is always the case when the drift term (i) The lack of reversibility normally associated with the
7 + 7 is non-null and nonunitary quantum Markovian master equation is captured by the lack
Hy ™ ~D - .

Sh > Th 3 i ith -t of small-time controllability.
__ I'heorem e system(3) is neither small-time nor iy The |ack of finite-time controllability could be ex-
finite-time controllable.

f der fi h -t labili pressed as the impossibility of accomplishing an arbitrary
Proof. Consider first the small-time controllability prop- oy cjic trajectory in finite time(with 100% probability by
erty. Assume the contrary holds, i.e., thate intR(p;,T)

) A means of coherent control alone.
0 T>0. Then any small enough neighborhatdp,) of p; is
such thatA{(p;) CintR(p;,T). Consider the case of initial
condition which is a mixed state: <Q|p][?<1. Then p;
eintR(p;,T) O T>0 implies thatd a neighborhoodV(p;) Although controllability in small time and finite time is
and control inputs such that stathgl(T) e Mp,) with missing, it is possible to give a detailed global description of

IV. GLOBAL STRUCTURE OF THE REACHABLE SETS
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FIG. 2. Cartoons of the reachable sﬁéﬂ, <t) (gray areap FIG. 3. Cartoons of the reachable s&¢p;, <t) (gray areap
for the two-level atom with phase dampingp unital) ast grows.  for the two-level atom with spontaneous emissidh, affine) ast

grows.
the sets of states reachable from a given initial conditipn

The S|mplle.st case 'Sl\'he@b. Is unital. ) (Example (2) of Sec. V of [10]; see also Sec. V belgw
Proposition 1 If Lp unital and (3) accessible, then jnterplaying with the controls. If we measure the purity of a

R(p;,<1) is an annulus of inner and outer radius, respecyensity operator by the norfjp], then we automatically get

tively, [p(t)| and|jpi]]. Whent—, cIR(p;) is the ball of  the following.

radius|pil _ Corollary 2. For £, unital, the purity ofp subject to(3) is
Proof. In Eg. (6), £p unital can point only inward: nonincreasing.

(d/d|[p?’<0 O t=0. Furthermore, accessibility implies  Proof. It follows again from(d/dt)[p|2<0 0 t=0. ®

that p(t) can be placed on any point of the sphere of radius ¢ sjtation is more complicated whel, is affine. In

[p(v)ll, regardless of the existence of a fixed point f5.  fact, in this case, the monotonicity property may not hold

Thus we have the form of an annulus at titnéor R(p;, any more, depending on the valuesmfand £p. A typical

<t) and the convergence to the cerfey 0 0 0" ast—=.B  example of what can happen is shown in Fig. 3 for the two-
Figure 2 shows a sketch of how the reachable sets groyevel system with spontaneous emission. In this case, the

monotonically in time wherCp is a phase damping operator corresponding Lindbladian operator is affine and has a fixed
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equilibrium point at the ground stafg=[p, 0 0 1/1/2]" (i.e.,

p,=10>ol
Pe= |0><O|)

3

V. COHERENT CONTROL STRATEGIES
IN THE PRESENCE OF DISSIPATION

In the first part of this section we discuss how to counter- P2
act dissipation by means of coherent control; in the last part
how to actively use it for the purposes of state transfer. When P

Lp is unital, Corollary 2 states a monotonicity property of
the Hilbert-Schmidt norm op that the coherent control can- i
not eliminate. However, such a control action can be used to
modify the rate of decay due to the dissipat{@nleast in the
case wherb is not proportional to the identifyby placingp FIG. 4. Solid arrow: dissipation operator in two different states
along the slowest direction of decay. (in pa it is decomposed into radial and tangential comporneiots

For example, if we have the phase damping channel of &e two-level spontaneous emission model. Dashed line: possible
two-level system “controlled” trajectory.

f

0 0 0 O ( q
3 .
- —_ —_ 0 -1 0 0|_ —-i| ady +Eukad4)p+vp0:0. (9
=hy.Msp+ >, uMp+c 0 e «
P ="No M3p gl kVikP 0 0 -1 0 P k=1
0O 0 0 O This may or may not have a solution, depending on the num-
ber of controls available, on the structure of the dissipation,
with ¢>0, it is enough to place the state[ip, 0 0 p;]" to  and on the statp in which it is computed.

get (d/dt)[[p]|>=0 in Eq.(6). This tells that we have a quan- It is convenient to show what is happening on an ex-
tum channel not satisfying Assumpti@A3). In fact, under ample. Consider the “amplitude damping channel,” i.e., the
Assumption(A3) any unital £, is such that two-level system with spontaneous emission mentioned
above. Its differential equation is given by
max(p, Lpp)) < 0. (8) 1 o o
P - —
o 0 —hg,=Us u, 2
The proof follows from{(p, Lpp))={p,Lp)} and the posi- ,=|h. +u 0 - + 1
- e p o, T U3 u |pty L p
tive definiteness oA. From Eq.(6), one has that the control 0 2 0
is not entering into(d/dt)[[p]> and hence in Eq(8). The ~ U Uy 0
objective of an “optimal” control strategy aiming at rejecting | 0 0 - 1_
as much as possible the dissipation should be to drive the 0

state to the maximizing as fast as possible. Because of the +10 (10)
linearity, the property of maximizing8) is shared by an Yi| = |pos
entire “ray” of Bloch vectors. Hence, once a strong pulse has 1
driven the state to the maximizingit can be switched off.
In the case of a depolarizing chanriEkample(1) in Sec. V
of [10]), each direction has the same dissipation rate, an
therefore the coherent control is totally useless. A number of
related results on control of unital Lindbladians appear in a
recent papef20].

When instead’, is affine, we can have a more construc-
tive use of the coherent controls for the purposes of rejecting

the dissipation becaus@, is not always radial and its non- ~ Ugpy + Ugpp + 7 po=0.
radial (i.e., tangential and hence unitargart can be sup-
pressed by a suitably chosen time-varying control law. Re
writing Eq. (3) as

were we assume all three controls are available and, for the
aake of simplicity, thatH,=0. The condition/9) becomes

~Ugpa +Uzp3=0,

Uspy —U1p3=0, (11)

For example, inpa=[p, 0 0]" (see Fig. 4, the affine term
behaves as unitary and can be completely eliminated by a
single control u,=vy,po/p;. On the contrary, in pg
q =[0 0 p5]" the affine term is “purely” radial and no coherent
p= —i(acp +> uad )p+ Lp+vpo, control can eliminate i(sinc.ep1 an(;ip2 are 0. Even whep
0 1 K Vpg can be suppressed, asgpr, nothing can be done against
the unital part p which still tends to steer the system to the
one possible choice of the control law=u,(p) is given by  completely random state. In the “ideal” case, the strategy
the following algebraidstate dependentonstraints: above gives the dashed trajectory in Fig. 4.
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Ps 050l TABLE I. Cyclic trajectories of Fig. 5 for a two level-atom with
P, = pe= 0><0 . .
coherent control coherent control and spontaneous emission.
State transfer Induced by Time required
i P Pa Coherent control Finite
v Pa Pa—Pp Spontaneous emission Infinite
D Ps— Py Coherent control Finite
=~ Py—Ps Spontaneous emission Finite

P, .
1 spontaneous emission

Fe controls and spontaneous emission, a closed cycle is de-
scribed in Fig. 5 and in Table 1.
FIG. 5. Cartoon of the cyclic trajectories on the Bloch sphere for

a two-level atom with coherent control and spontaneous emission.
VI. CONCLUSION AND OUTLOOK

Alternatively, one could design,=u,(p) by means of an The main advantage of the control-theoretic formalism
optimal control problem aiming at keepipgaway fromp. presented in this paper is that it allows us to give a more
Since pe is known, instead offp] one should considdfp  “fine-graded” characterization of the notion of irreversibility
-pd as the rate of decay due to the dissipation in the coshormally associated to dissipating quantum dynamical semi-
function (together with the norm of the control actipiNo-  groups and of how it interacts with the coherent control

tice from the derivative fields. This shows the intrinsic limits of unitary control for
these systems. In particular, the impossibility of fully reject-

d 2= " ing the dissipation i tured i trol-th tic t b
d_t”p_pe” =2(p = pep)) ing the dissipation is captured in control-theoretic terms by

the lack of small-time controllability. While this does not
forbid the construction of motion planning strategies that
= 2[<<p,LP+UP0>> make “active” use of the dissipatidnit also naturally calls
for richer classes of control fields than just unitary ones to be
studied. Several potential candidates have already been dis-
cussed in the literature for different physical settings, like the
use of gradient fields in NMR21] and the use of quantum
feedback in quantum opti¢22]. In the first case, varying the
constant longitudinal magnetic field, a nonunitary global ef-
= {paLp+vpo)) fect is obtained and can be used for control purposes; in the
second case a nonunitary degree of freedom is provided by

how this time the control plays indeed a nontrivial role.  the back action effect of a weak measurement.

As explained in[9], a nonzero steady state control can be Another potential direction of investigation is to look for
used also to modify the equilibrium point,=—-[-i(ad, “controlled decoherence free subspaces,” i.e., for particular
0

+39 ad, )+L ] p,, moving it from a pure to a mixed (unitary) Qontrol design able to actively confine decohe_rence
state K to a particular subspace of the state space, combining the

L ecoherence-free techniques of widespread use in quantum
The_ bottom line is _that regardlle_ss_ of the _control law andgomputing with the “disturbance decoupling” methods of
even if we can modify the equilibrium point, we cannot

modify the character of local irreversibility due to the lack of n_onlmear control theorysee Chap. 7 of23] for an over-
. . . view).

small-time controllability(see Remark Y1 However, if we

decide to use decoherence, rather than just trying to suppress

q
Pe— i (aOho+ kE ukamk)p
=1

it “locally,” then it is for example possible to accomplish ACKNOWLEDGMENTS
repeatable tasks. From the proof of Theorem 2, we have that
cyclic trajectories involving only mixed statggven with The author would like to thank A. Agrachev, S. Lloyd, A.

different degrees of mixingmay be feasible using coherent Landahl, and F. Benatti for discussion on the topic of this

controls if £y is affine, and could be accomplished in finite work.
time. If instead they involve pure statgand thus “complete

purification”) they can only occur in infinite time even !Most of the techniques for state transfer in the presence of relax-
is affine. For example, for the two-level atom with coherentation in the NMR practice are based on this principle; &£25.
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